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Abstract: A model of the rotating molecule in the pseudorotating cage is developed. The pseudorotation arises from host molec
ular relaxations into the minimum-energy configuration, depending on the guest molecular orientation. The cage's shape and 
alignment thus resemble those of the molecule, provided that lattice relaxations are faster than the rotation. The pseudorota
tion yields two effects which are incorporated in the generalized Devonshire model of matrix-isolated rotating molecules: the 
moment of inertia increases, and the cell potential of the undistorted lattice is replaced by that of the relaxed lattice. As an ex
ample, the librational spectrum of CO molecules imbedded in argon is considered. 

I. Introduction 
Rotating or librating molecules in solid matrices may induce 

an interesting effect which we wish to present in this paper. The 
effect is illustrated in Figure 1, and a qualitative description 
is as follows. 

For a given molecular orientation, the neighboring host 
molecules relax into new equilibrium positions.1-5 Therefore, 
the host molecules form a cage which differs from the undis
torted lattice cage. Typically, the shape of the distorted cage 
resembles that of the guest molecule; e.g., an ellipsoidal mol
ecule may destroy the cubic host lattice symmetry and induce 
ellipsoidal deformations in its vicinity.5,6 When the guest 
molecule is slowly reoriented, the cage deformations may 
follow the molecule owing to the nonrigidity of the host lattice. 
Thus, in the previous example, an ellipsoidal molecule may 
always find itself surrounded by an ellipsoidal cage orientated 
along the momentary molecular orientation. The guest mole
cule then rotates in a synchronously rotating cage. Since the 
cage rotation is established by cooperative small deviations of 
host molecular equilibrium positions from undistorted lattice 
sites (and not by actually rotating host molecules) we call it 
& pseudorotation. 

An important consequence of the synchronous molecular 
rotation and cage pseudorotation is the effective increase of 
the molecular moment of inertia. We shall show below in 
section II that it may exceed the moment of inertia of the 
molecule in the gas phase by 50% or even more. 

The larger effective moment of inertia in turn may lead to 
interesting observable consequences. Firstly, it influences the 
rotational or librational spectra of matrix isolated molecules. 
An example will be presented below in section III. Secondly, 
together with the lattice relaxations it may affect the rates of 
vibrational energy relaxation and transfer via the role of the 
molecular rotational motion which has been determined in 
recent experiments7-14 and theories.3,14-25 

The coupled molecular and host rotation and pseudorotation 
should, of course, be described rigorously using quantum 
mechanics, and including all the couplings of the molecular 
vibrational, librational, and translational degrees of freedom 
with the lattice phonon modes. The corresponding theoretical 
framework has been developed in the past,26-31 culminating 
presently in such different approaches as those of Berkowitz 
and Gerber,20 of Zumofen, Dressier, and Kunsch3,23-25 (see 
also ref 32), and of Friedmann and Kimel.53 However, here we 
shall restrict ourselves to developing a simple semiclassical 
model. We hope that the model may serve as a guide to the 
more sophisticated quantum-mechanical approach. Essen
tially, the model describes the rotation of the guest molecule 
with its larger effective moment of inertia in the potential field 
induced by the host molecules of the pseudorotating cage. With 
a quantum-mechanical treatment of this rotational motion, 

the present model then is an extension of the classic approaches 
by Pauling33 and Devonshire34 (see also ref 6 and 35-37). 

To verify the predictions in a first example, we shall ex
plicitly consider the case of a CO molecule imbedded in an 
argon matrix. This system has been intensively studied in the 
past, both experimentally14,38-43 and theoretical
ly 5,15,22,26,30,44-49 Jn particular, Dubost observed a weak 
spectroscopic band which he assigned to isolated librating CO 
molecules.39,40'43 From a careful consideration of previous 
theoretical approaches he concluded that none of them could 
satisfactorily account for the properties of the librational 
band39'40 (see, however, ref 43 for a very recent discussion of 
the width of the band). In this paper, we propose an explanation 
of the experimental findings using the present model. 

This paper is structured as follows. In section II we derive 
the increase of the molecular moment of inertia due to the 
pseudorotation of the cage. In section III, we consider the or-
ientational dependence of the molecule-cage interaction po
tential, taking into account the pseudorotational cage defor
mations. Both effects, i.e., the effective moment of inertia and 
the effective interaction potential, are used to generalize the 
Devonshire cell model of matrix-isolated rotating or librating 
molecules. Results, discussions, and conclusions are in sections 
IV-VI. 

II. The Effective Moment of Inertia of the Rotating 
Molecule in the Pseudorotating Cage 

In this section, we derive the effective moment of inertia of 
the rotating molecule in the pseudorotating cage. For this 
purpose, we consider first the lattice relaxations around a single 
vacancy substitutional molecule. 

As an example, we illustrate in Figure 2 the Ar-matrix re
laxation around a CO molecule. The results are adapted from 
ref 5. 

When the central molecule is oriented along the energeti
cally preferential (0,0,1) crystal axis, the nearest-neighbor 
atoms in the polar configuration (labeled 1, 2, 3, 4, 9,10,11, 
12 in Figure 2) are pushed away by «0.05 A, whereas the 
atoms in the equatorial configuration (labeled 5, 6, 7, 8) are 
attracted by «0.06 A toward the molecule (see the top panel 
of Figure 2). As a result, the 12 nearest-neighbor atoms form 
an approximately ellipsoidal cage. Its major and minor semi-
axes deviate from the radius R = 3.756 A of the undistorted 
spherical cage by only 

AR «0.06 A (1) 

The ellipsoidal cage deformation results from the approxi
mately ellipsoidal shape of the CO molecule.5 

Also shown in Figure 2 is the shift of the guest molecule 
toward its energetically favored position. As a result, the mo
lecular center of interaction RCj coincides (by definition26) with 
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rotating molecule trapped in pseudo-rotating cage 

Figure 1. Rotating molecule trapped in synchronously pseudorotating cage 
(schematic). The molecule is shown as a black-white ellipsoid together 
with its nearest neighbors (black dots) in eight successive phases $ = 
i'(2ir/8), i = 0, I, . . ., 7, of the full rotation. The shifts Ar„($) of the 
neighboring molecules from undistorted lattice sites on a sphere (thin 
continuous lines) toward their momentary equilibrium positions on an 
ellipsoid (heavy continuous lines) are indicated by little arrows. Note that 
a full guest molecular rotation corresponds to a double cycle of the indi
vidual shifts Ar1, around the undistorted lattice sites. 

the central lattice site, and the distance from the molecular 
center of mass, Rcm, is 

a(0,0,l) = |Rci - Rcm | = 0.25 A (2) 

A similar pattern arises when the molecule is reoriented 
along the (energetically less favorable5) (1,1,1) direction (see 
the center panel of Figure 2). Again the polar atoms (now those 
labeled 1,4, 5, 7,10,11) are pushed away (now by «0.07 A), 
whereas the equatorial ones (labeled 2, 3, 6, 8, 9, 12) are at
tracted (by «0.06 A) toward the central molecule. As a result, 
the molecule finds itself again surrounded by nearest neighbors 
which form an ellipsoidal cage very similar in shape to that 
attained in the molecular (0,0,1) direction. Furthermore, the 
distance of the molecular centers of interaction and mass is 

a ( l , l , l ) = 0.20 A (3) 

i.e., also very similar to «(0,0,1), eq 2. 
As is indicated in Figure 2, the molecule may further move 

on to the (0,1,0) direction, etc. Here, by symmetry consider
ations, the ellipsoidal matrix cage is, of course, equivalent to 
the (0,0,1) cage, but now oriented along the molecular (0,1,0) 
direction. In summary, successive molecular reorientations 
with synchronous lattice deformations such as those indicated 
in Figure 2 provide an example of the effect shown schemati
cally in Figure 1. 

As a result, the calculations of the lattice relaxations5 show 
two effects which lead to an increase of the effective molecular 
moment of inertia, / . One of them is well known,26,40 i.e., the 
contribution due to the effective rotation of the molecular 
center of mass around the center of interaction 

A/, = Ma2 (4) 

Figure 2. Rotating CO molecule in its pseudorotating Ar cage. Three 
successive molecular orientations along the lattice (0,0,1), (1,1,1), and 
(0,1,0) directions are shown in the top, center, and bottom panels, re
spectively. In each case, equivalent undistorted lattice sites are connected 
by straight lines. The little arrows indicate the host atoms' shifts toward 
new momentary equilibrium positions (•) (not to scale). The relaxation 
of the molecular center of mass away from the central site is also indicated 
by an arrow. As a result, the C atom is moved toward the origin. 

second contribution, A/2, arises from the synchronously 
pseudorotating cage. 

In order to estimate A/2, we employ the planar model il
lustrated in Figure 1 with the values for the cage deformations 
obtained above from the calculations of lattice relaxations. 
When the molecule is rotated by an angle $ , the equilibrium 
position of neighboring atom v oscillates around its undistorted 
lattice site: 

Ar„($) ~ Ar, sin(2$ + 5„) (5) 

The important factor 2 in eq 5 indicates that a half-rotation 
of the molecule suffices to induce a full cycle of the shifts 
Arv($) from maximum repulsion over maximum attraction 
back to maximum repulsion (with amplitude Arv and phase 
5„); cf. Figure 1. The average classical kinetic energy of the 
pseudorotating cage then is 

1 
. « ^ E mvArv

2 (6) 

where M is the molecular mass, and a = |Rcj — Rem I is roughly 
independent of the molecular orientation; cf. eq 2 and 3. The 

where the sum is over all nearest neighbors, and the bar indi
cates the time average. We shall now rewrite eq 6 in a form 
which indicates the corresponding effective moment of inertia. 
Note that, according to the model, Ar„(<I>) depends on the 
molecular rotational frequency. A molecule rotating with 
frequency OJ = <£>// thus induces a pseudorotation of its cage 
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oscillation AR̂ . 
*• pseudo - rotation Ar,( $ ) 
+ vibration yf 

Figure 3. The motion of a neighboring host atom v viewed from the rotating 
molecule. The host oscillation A/?„, i.e., the deviation of the atomic position 
from its undistorted lattice site (illustrated by the dashed sphere), consists 
of the pseudorotational shift toward new momentary equilibrium positions, 
Ar1X*) (illustrated by the heavy ellipsoid), plus the shift/,, arising from 
lattice vibrations around the momentary equilibrium positions. 

with kinetic energy 

r r o t = IAZ 2 O) 2 (7) 

where the effective moment of inertia is determined from eq 
5 and 6: 

AZ2 * 2 £ mArv1 (8) 
V 

The total effective moment of inertia associated with the 
coupled molecular and cage rotation and pseudorotation then 
is 

/ = Z0 + A/, + AZ2 (9a) 

with Zo the gas-phase molecular moment of inertia. 
As an example, let us consider the case of CO in Ar. With 

a « 0.25 A (cf. eq 2 and 3) in eq 4 and Ar11« 0.06 A (cf. eq 1) 
in eq 8, eq 9 reads 

Z= (8.73 + 1 . 7 5 + 3.46) amu A2 (9b) 

i.e., the effective moment of inertia of CO in Ar„Z = 13.94 amu 
A2, exceeds that of CO in gas by a factor of 1.6. 

At first glance, the rather large value of AZ2 is quite sur
prising in the light of the rather small shifts Ar1,« 0.06 A, eq 
1, which enter eq 8 even squared. However, this small factor 
is compensated mainly by the large number of nearest neigh
bors, and also by the (square of) the factor 2 of eq 5, i.e., the 
double-speed pseudorotation in comparison with the molecular 
rotation. 

We emphasize that eq 5-8 have been derived from a simple 
model and therefore serve only as approximations to the dy
namically consistent quantum-mechanical description. The 
more realistic three-dimensional realization, Figure 2, indicates 
that higher order Fourier components are necessary in eq 5 for 
an exact description of the time dependence of the host atoms' 
shifts toward their momentary equilibrium positions. Fur
thermore, the full host atom's oscillation AZ? „ around the un
distorted lattice site consists of two parts: the "concerted" 
portion of the full lattice motion, i.e., the pseudorotational shift, 
Ar11, and the remaining shift y„ which describes lattice vibra
tions around the momentary equilibrium configuration; cf. 
Figure 3. Clearly these motions are coupled, and the separating 
approximation (6) is only valid if the rotation is slower than 
the typical lattice vibration. Last, but not least, the sum in eq 
8 should also include non-nearest-neighbor sites, but their very 

Figure 4, The orientational topology of the potential energy of CO in solid 
Ar. The CO center of interaction is at the origin. Heavy continuous lines 
indicate equipotential contours drawn on a sphere; the symbols min, saddle, 
and max denote the corresponding potential energy minima, saddle point, 
and maxima, respectively. The dashed arrows illustrate possible classical 
paths of molecular orientations from minima over saddle points to new 
minima. The branch leading from the z axis over the saddle to the/ axis 
corresponds to the reorientation from the (0,0,1) over the (1,1,1) to the 
(0,1,0) directions illustrated in Figure 2. 

small amplitudes Ar„ give only negligible contributions to AZ2 

(see ref 5). In the following we shall neglect all these refine
ments which should rigorously arise from a full quantum 
mechanical treatment; i.e., we shall employ the approximation 
(9) with AZi and AZ2 given by eq 4 and 8, respectively. 

III. The Effective Potential of the Rotating Molecule in the 
Pseudorotating Cage 

The model of the rotating molecule in the pseudorotating 
cage can now be used to generalize the Devonshire cell model 
of librating molecules trapped in solid matrices. The Devon
shire model34 essentially aims at the computation of librational 
spectra of matrix isolated molecules. For this purpose, mo
lecular gas-phase moments of inertia are used, and the mole
cule rotates in the potential field V(Q, <£) of the molecule and 
the undistorted lattice. The topology of V(Q, 4>) is illustrated 
schematically in Figure 4 for the case of CO in Ar. A quanti
tative contour plot of the potential is shown in Figure 5 
(adapted from ref 5; V has been called AV in ref 5). 

The model of the rotating molecule in the pseudorotating 
cage now suggests that V(Q, <t>) should be replaced. In fact, the 
guest molecule in the (©,$) orientation (and with its center 
of interaction at the origin) actually has its neighboring atoms 
relaxed into momentary equilibrium positions. The corre
sponding interaction potential V(Q, $ ) is different from 
K(G, 4>), i.e., V should be replaced by V. In other words, the 
synchronously pseudorotating cage does not only lead to an 
increased effective moment of inertia, cf. section^ II; it also 
establishes self-consistently the potential energy K(G, <I>) for 
the momentary molecular orientation. Note that, vice versa, 
the specific geometries attained by the pseudorotating cage 
(such as those illustrated in Figure 2) are defined by the con
dition that, for the given molecular orientation (0 ,$ ) , the 
potential energy of the guest molecule in the matrix should be 
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Figure 5. Potential energy surface K(Q, $) for CO in Ar, adapted from 
ref 5. The CO center of interaction is at the origin, whereas the host atoms 
are not relaxed. Numbers on the equipotential contours give the value of 
Kin kJ mol~'. (K=O corresponds to the pure Ar crystal.) A schematic 
spherical presentation of the potential is in Figure 4. 

minimal, K(G,$).5 For example, when the molecule is oriented 
along the (0,0,1) or (1,1,1) directions (cf. Figure 2), the el
lipsoidal lattice deformations lead to decreases from K(0°,0°) 
= 0.16 kJ mol" and K(54.7°,45°) = 0.79 kJ mol"1 (cf. Figure 
5) to 

K-(0°,00) = -0.16 kJ mol-' 

K(54.7°,45°) = 0.16kJmol-4 (10) 

respectively, in the case of CO in Ar.5 From eq 10, the potential 
barrier can be estimated, AV « 0.32 kJ mol-1 » 27 cm-1. It 
is gratifying that this value is apparently in accordance with 
a similar barrier height deduced from the anharmonicity of the 
0 -»• 1 and 1 —• 2 librational transitions.43 

At this point, we should like to emphasize that, in the present 
model, K(Q, Q) is the minimum molecule-lattice interaction 
potential energy for the given molecular orientation. In par
ticular, K(G, Q) - K(G,$) is not necessarily a constant; cf. eq 
IJD. In principle it is even possible that the topologies of K and 
K differ, although the approximately constant shape of the 
gseudorotating cage suggests rather smooth variations in K -
V. In any case, the present model goes beyond that of Lee,6 

which assumes that the matrix cage retains its global minimum 
energy configuration (see Figure 5 of ref 5). 

For simplicity, Devonshire34 approximated V(Q,Q) by an 
analytic expression which maintains the octahedral symmetry 
and allows for a straightforward (though lengthy34-37) evalu
ation of the corresponding librational eigenenergies: 

V(Q,Q) ^ VD(Q,Q) = KV(Q,Q) a n 

(the subscript D means Devonshire) where 

V(Q1Q) = - i (3 - 3 0 cos2 G 
O 

+ 35 cos4 G + 5 sin4 G cos 4$) (12) 

and AT is a constant which may be adjusted to reproduce the 
barrier of V(Q1Q). Similarly, as a first approximation, it is 
convenient to employ the same functional form for V(Q1Q): 

K(G,*) * KD(G,<t>) s K0 + Kv(Q1Q) (13) 

where Kn is an unimportant constant. The minima and maxima 

Figure 6. Devonshire approximation KD(9,$) of the relaxed potential 
K(9,$) for CO in Ar. KD(9,*) is the interaction energy when the CO 
orientation is (6,*), the center of interaction is at the origin, and the Ar 
atoms are relaxed to their minimum-energy configuration. KD is fitted to 
K at (9,#) = (0°,0°) and (54.7°,45°). 

of KD are attained as 

KD(0°,0°) = K0 - K 

KD(54.7°,45°) = K0 + | # (14) 

respectively. The parameters K0 and K may now be adjusted 
to reproduce the values (10): 

K0 = 0.03 kJ mor ' = 2.7 cm-' 

K = 0.19 kJ mol-1 = 16.0 cm-' (15) 

The resulting potential VD(Q,Q) is shown as a contour plot in 
Figure 6. 

We note that, in spite of the formal similarity of eq 11 and 
13, there is a very important difference in their justifications. 
In the original Devonshire model, the impurity "sees" octa
hedral symmetry due to the geometry of the rigid lattice. In 
contrast, the instantaneous geometry around the impurity is 
a synchronously distorted octahedron, suggesting a lower than 
octahedral symmetry on pure geometrical grounds. However, 
the octahedral symmetry is restored in eq 13 since corre
sponding equivalent reorientations of the impurity lead to 
equivalent geometrical lattice distortions (be they distorted 
octahedrons or not!). For example, from the discussion of 
Figure 2 it is evident that the same value is obtained for the 
relaxed potential energy V(Q, Q) when the impurity axis points 
to any of the six octahedral corners, i.e., along the lattice axes. 
A more sophisticated explanation of the restoration of the 
octahedral symmetry in eq 13 can be given on the grounds of 
modern group theory:54 the relaxed potential (13) displays the 
symmetry of the system's Hamiltonian, which is in general 
higher than the point group of the instantaneous equilibrium 
configuration. 

The advantage of the approximation (13) is that the corre
sponding librational eigenenergies E are already available; see 
ref 34 and 37. They are replotted in Figure 7, for arbitrary 
values of K and the rotational constant, B. 

The proper value B of the rotational constant is determined 
using the result of section II. Since B is reciprocal to the mo
ment of inertia, eq 9 yields 
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Table I. Librational Transition Frequencies of CO in Argon 
According to the Generalized Devonshire Model" 

1805 

transition AH* Aoj/cm" 

Aig — Tiu 
Tiu - * Eg 
Eg —Tiu 
Tiu — Aig 

Aig — Tiu 
Aig — T2u 

Eg — Tiu 
Eg — T2U 
Tiu — T 2 g 

0 
0 
0 
0 
1 
1 
1 
1 
1 

1.4 
-1.4 
-1.8 
15.2 
17.2 
11.6 
13.6 
9.8 

" The model of rotating molecules in pseudorotating cages yields 
the Devonshire-model parameters B = 1.2 cm-1, K = 16.0 cm-1, i.e., 
K/B = 13.3. * For larger values of K/B, the lower levels Aig, Ti11, and 
Eg correspond to n = 0, whereas the more excited levels T2g, Tju, and 
T2u correspond to n = 1.c Cf. Figure 7. d The experimental value for 
AH = 1 is a broad band centered at Ao> « 11.4 cm-1.40 

B = B(I0/!) = 1.2 cm- • l (16) 

where we used the gas value, B = 1.931 28 cm - 1 , Of12C16O.50 

From eq 15 and 16 

K/B = 13.3 (17) 

and the corresponding librational energies (in units of B) can 
be read directly from Figure 7. 

IV. Results 

In this section, we present the results obtained from an ap
plication of the theory to the special case of a CO molecule 
rotating in the pseudorotating cage of an Ar matrix. As is ev
ident from Figure 7, the reorientation of CO in Ar is in the 
transition region between free rotation and libration. 

In Table I we list the corresponding lowest frequencies of 
the symmetry-allowed librational transitions. They can be 
roughly grouped into four transitions, An = 0, with frequency 
±1 cm - 1 and five transitions, An = 1, in the range 10-17 
cm - 1 , where An corresponds to the librational quantum 
number assignment. We note that these results are in rough 
accordance with the narrow An = 0 band and the broad An = 
1 librational band centered at 11.4 cm - 1 , as observed by Du-
bost.39'40'43 Figure 7 also shows that the degeneracy of the n 
= 1 librational levels is much larger than the degeneracy of the 
n = 0 levels. This suggests considerable contributions to the 
temperature broadening of the librational bands, as observed 
experimentally39,40 (for a discussion of other contributions to 
the line width, see ref 5 and 43). Note that the effective rota
tional constant, eq 16, corresponds to only B= 1.6 K; i.e., at 
6 K (the lowest experimental temperature44) levels Aig, Tiu , 
and Eg are all populated to a considerable extent, whereas the 
higher levels T2g, Ti11, T2U, etc., interfere as soon as T S. 13, 
16, 19 K, etc., respectively. Furthermore, the intensities /A„ 
of librational An transitions vary roughly as35 

1A„~(2B/Aa)*" (18) 

Using the value, eq 16, for B, and « * 12 cm - 1 , cf. Table I, 
yields /A« * 0.2A". Actually the estimate (18) has been derived 
in ref 35 for the librational limit where Aa> is larger, Aw £ 40 
cm - 1 (cf. Figure 7), so that the intensities should decrease even 
more dramatically with increasing An. In any case, the result 
(18) is again in rough agreement with the experimental re
sult:39,40 the An = 1 intensity is approximately an order of 
magnitude smaller than the An = 0 intensity, whereas the An 
= 2 librational transition is not observable within the weak 
phonon sidebands (which are again an order of magnitude 
smaller in intensity; precise values of intensities are not given 
in ref 39 and 40). 

CTl 
C 

a 
o 

CTl 
C 

a 
JD 

molecule in Devonshire cell 
Figure 7. Librational energies E as functions of the rotational constant 
B and the barrier parameter K of the Devonshire cell model adapted from 
ref 34. The model_of rotating molecules in pseudorotating cages yields B 
* 1.2 cm-1 and K = 16.0 cm- ' for CO in Ar. The corresponding libra
tional energies are determined by the dashed line at K/B = 13.2, i.e., in 
the transition region between free rotation (quantum numbers J) and li
bration (quantum numbers n). 

V. Discussion 

It is interesting to contrast the agreement of the experi-
mental39,40 '43 findings and the present results with the dis
agreement obtained without the model of the rotating molecule 
in the pseudorotating cage. In the latter case, K = 0.50 kJ 
mol - 1 = 41.6 cm - 1 (cf. eq 10 and 14), and the values of S are 
1.931 28 c m - ' 50 or 1.61 c m - ' 40 in the gas, and including the 
molecular center of mass rotation around the center of inter
action, respectively (cf. eq 4, 9, and 16. Using the corre
sponding values oiK/B « 21 or » 26 in the Devonshire model, 
Figure 7 yields values of the librational frequency Aw « 25 or 
23 cm - 1 , twice as large as the present and the experimental 
value,» 12 cm - 1 . 

Of course, the model of the rotating molecule in the 
pseudorotating cage does not require the approximation (13). 
Instead, K(G, 4>) could be computed directly (e.g., in a force-
field calculation) and used in a numerical solution of the 
Schrodinger equation for the librational eigenenergies and 
-functions: 

(JL1IIl +V)i = E\p (19) 

where JL is the angular momentum operator. The numerical 
computation of V and_the solution of (19) may exploit the 
octahedral symmetry (V(Q,3>) need be computed on only '/48 
of the 4x sphere [ (6 ,$)] ) as well as the fact that non-near
est-neighbor atoms essentially do not participate in the lattice 
relaxation the minimum of V(Q,$) needs to be found in a 
configuration space of dimension not exceeding 1 2 X 3 + 1 = 
37). Furthermore, since the pseudorotational cage deformation 
is an intermolecular effect, the minimum potential V(Q, $ ) is 
insensitive to three-body interactions depending on intramo
lecular coordinates.5 Comparison of the topologies of the un-
distorted potential V(Q,$) (see Figures 4 and 5), with 
VQ(Q,$) (see Figure 6) suggests that the maxima of VQ are 
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actually saddle points of the exact V; the maximum values of 
V should then slightly exceed 0.16 kJ mol~', and the librational 
character of the spectrum would be more pronounced. 
Therefore, we expect that the exact solution of eq 19 should 
also lead to a An = 1 librational band centered at »12 cm -1, 
but the An = 0 and 1 bands should be narrower than in Table 
I, in accordance with the experimental findings. 

VI. Conclusions 

In this paper, we have introduced the model of the rotating 
molecule in the pseudorotating cage. The model has been used 
to generalize the Devonshire cell model,34 which implements 
a rigid cage for the rotating molecule. Two important effects 
of the nonrigidity of the lattice are incorporated. Firstly, for 
a given molecular orientation, the molecule-crystal interaction 
potential energy is minimized by lattice relaxations, thus re
placing the potential for the molecule in the undistorted lattice. 
Secondly, the orientation-dependent lattice relaxations induce 
an increase of the effective moment of inertia associated with 
the coupled molecular and host rotation and pseudorotation. 
The resulting Schrodinger equation, eq 19, is nevertheless no 
more complicated than for the original Devonshire model, 
provided that similar potential approximations are employed. 
From eq 13 approximate librational spectra can be deduced 
directly from Devonshire's energy diagrams,34 however, with 
"reduced" barrier and rotational constants, K and B, according 
to the two effects of the pseudorotating cage. 

The approximate form of the increased effective moment 
of inertia, eq 9, suggests an interesting isotope effect. The first 
contribution, i.e., the well-known rotation of the center of mass 
around the center of interaction, increases with the guest 
molecular mass. The second contribution, i.e., the pseudoro
tation, increases with the host molecular masses; cf. eq 4 and 
8, respectively. 

We should like to point out that similar increased effective 
moments of inertia (or corresponding rotational constants) are 
already known in the field of molecular internal rotations, e.g., 
of molecular "top"-side groups spinning with respect to the rest 
"frame" (see, for example, ref 51). However, there is an im
portant difference between physical mechanisms: in internal 
rotations, the increased moment of inertia essentially arises 
from the distortions of the top which increase with increasing 
rotational quantum number, i.e., the corresponding effective 
rotational constants decrease. On the other hand, the faster 
the rotation of a matrix-isolated molecule, the smaller should 
be the cage's pseudorotational ability to follow the rotation; 
i.e., we predict increasing effective rotational constants with 
increasing rotational quantum number. A corresponding effect 
in molecular internal rotations would require deformations of 
the frame. 

The model has been exemplified for the case of CO in Ar, 
yielding qualitative agreement with the experimental libra
tional spectrum. In particular, the sublevels of the first libra
tional excitation, n = 1, have energies «13 ± 3 cm - ' , clearly 
below the typical argon phonon energies «D ~ 63.9 cm-1.52 

The model assumption that the librational motion is slow in 
comparison with lattice vibrations is therefore justified for the 
case of CO in Ar. We note that, for molecules with very large 
rotational constants, such as the hydrazides, the frequency 
relations may be reversed, and one is then in the regime of 
complementary theories, e.g., ref 20. The present model is 

expected to apply in particular for heavier molecules trapped 
in pseudorotating cages. 
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